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Code review is a common type of peer review in Computer Science (CS) education. It’s a peer 

review process that involves CS students other than the original author examining source code and 

is widely acknowledged as an effective method for reducing software errors and enhancing the 

overall quality of software projects. While code review is an essential skill for CS students, they 

often feel uncomfortable to share their work or to provide feedback to peers due to concerns 

related to coding experience, validity, reliability, bias, and fairness. An automated code review 

process could offer students the potential to access timely, consistent, and independent feedback 

about their coding artifacts. We investigated the use of generative Artificial Intelligence (genAI) 

to automate a peer review process to enhance CS students’ engagement with code review in an 

industry-based subject in the School of Computing and Information System, University of 

Melbourne. Moreover, we evaluated the effectiveness of genAI at performing checklist-based 

assessments of code. A total of 80 CS students performed over 36 reviews in two different weeks. 

We found our genAI-powered reviewing process significantly increased students’ engagement in 

code review and, could also identify a larger number of code issues in short times, leading to more 

fixes. These results suggest that our approach could be successfully used in code reviews, 

potentially helping to address issues related to peer review in higher education settings. 
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Introduction 
 

Peer review of student’s work has long been established as an effective teaching technique (Kottke, 1988) with a 

wide range of benefits and uses, although it is primarily thought of as an alternative mechanism for providing 

formative feedback (Liu & Carless, 2006). In the context of this study, peer review is defined as a process 

whereby a student conducts a structured critical analysis of another student’s work and then provides that 

analysis to the other student, either synchronously or asynchronously. This may be done one-on-one, in small 

groups or be completely open; it also may be anonymous or personal. There are many approaches to 

implementing peer review in the classroom (Pearce et al, 2009), some of these include: having students share 

work in a forum for discussion, asking students to provide critical feedback on a presentation, demonstration, or 

piece of writing, or by grouping students to reciprocally review and discuss each other’s work.  

 

Peer review has the potential to help students in the development of self-efficacy towards 21st century skills as 

they apply knowledge rather than simply recalling concepts (Novakovich, 2016). By participating in peer review 

activities, students have a chance to engage and apply critical thinking, problem-solving and decision-making 

skills to their tasks. Additionally, as students document and provide constructive feedback to each other on 

reviewed artifacts, they develop social and communication skills, enhance analytical and evaluative abilities, 

and foster collaboration on course-related content (Boud and Falchikov, 2008). Harland and colleagues (2017) 

observed that when students are presented with feedback from multiple sources (i.e., other students, teachers, 

and/or industry partners), they often make use of “whichever comment made sense to them”. One significant 

challenge of using peer review is getting students to see the value in the process, and to participate honestly and 

effectively (Reddy et al., 2021). 

 

Code review is a common type of peer review in Computer Science (CS) education. It’s a process in which 

developers other than the original author examine source code and is widely acknowledged as an effective 

method for reducing software errors and enhancing the overall quality of software projects (Bacchelli and Bird, 

2013). In educational contexts, CS students review each other's work to provide constructive feedback about 

source codes. Providing and receiving feedback during code review promotes self-reflection among students and 

drives improvement in the quality of their work (Pearce et a., 2009). While code review is an essential skill for 



 
 

CS students, students and educators face challenges that can hinder the effectiveness and overall outcomes of 

this process (Indriasari et al., 2020): (i) students may lack technical knowledge or skills to participate in the 

reviews, making it difficult for them to perform thorough and accurate code reviews; (ii) students may not fully 

engage in reviewing processes, which can negatively impact the outcomes of it; (iii) students may perform poor 

review quality, which refers to cases where the students' assessments and feedback are inconsistent or 

unreliable, undermining the credibility of the review process and limiting its effectiveness in improving code 

quality. Addressing some of these issues could enhance the effectiveness and outcomes of peer code reviews, 

enabling students to benefit from this collaborative and instructive process. 

 

In this context, we investigated potential use of generative Artificial Intelligence (genAI), which is a sub-branch 

of AI that uses machine learning trained models to create various types of media contents, to automate a peer 

review process to enhance CS students’ engagement with code review in industry-based subjects. Moreover, we 

evaluated the effectiveness of genAI at performing checklist-based assessments of code. The goal of our 

automated code review process is not to replace developers during code reviews but to support them identifying 

code quality issues. Code reviews are particularly relevant for CS capstone courses with real industry partners 

where software solutions become available to stakeholders beyond subject boundaries.  

 

Our study designed, compared, and evaluated peer-to-peer and genAI code review processes from 80 CS 

students involved in a capstone subject. We found our genAI-powered reviewing process significantly increased 

students’ engagement in code review. As an outcome, more code issues were identified, and addressed in the 

subject.  

 

Background literature 
 

Peer code review in higher education 
 

When undertaking code review developers work together, synchronously, to carefully examine and evaluate 

proposed changes before incorporating them into the project's code repository (Wurzel et al., 2023). The code 

review process is simple, but time consuming. In a typical example, the original author of a software code 

invites a few team members (reviewers) to review artifacts or documents prior to a synchronous meeting. 

Reviewers inspect coding artifacts and document their observations considering criteria like: (i) are there 

semantic errors in the code? (ii) is the code well-documented? (iii) does the code conform to existing coding 

styles? (iv) do existing unit tests need to be rewritten to account for the changes in this code? Additionally, 

reviewers identify the severity of identified issues in the inspected code. Once all reviewers complete their code 

review and document their feedback to the original author of the software code, everyone meets, in real time, 

and discusses all identified issues. As an outcome, the original author of the code will have clarity on what 

artifacts must be reworked and team members share knowledge and reflect on the process together.  

 

Although there are a lot of positive traits associated with code review practices in the software development 

lifecycle, the development of software with high code quality in university environments is a challenge for 

educators (Krusche et al., 2016). Attempts to better promote code quality among software engineering students 

may require curricula redesign and new, more authentic assessments. Academic fabricated projects have a clear 

scope, problem, and expected outcome. They are especially popular among programming courses because they 

can be scaled to large classrooms and graded with a limited teaching staff (Combefis, 2022). However, as 

fabricated projects are not expected to become available to broader audiences nor are fully aligned with real-

world problems, they don’t always provide an opportunity for software engineering students to demonstrate 

their true capacity to integrate and apply their knowledge and skills in the design of software solutions, resulting 

in lower learning experiences (Krusche et al., 2016). One approach to mitigate this challenge is with the use of 

industry based capstone projects. 

 

Code review in capstone projects 
 

Computer science, software engineering and other IT-related courses are industry-oriented disciplines. Their 

curricula need to prepare students to be industry-ready, which means teaching should promote the development 

of authentic technical and professional skills in classroom environments (Chen et al., 2009). To address this 

issue, several universities have designed capstone courses where all the knowledge acquired during the students’ 

learning journey is applied in practice. 

 



 
 

Moore and Potts (1994), one of the first authors to report initiatives involving collaborations between students 

and real industry partners in software engineering courses, designed The Real-World Lab experience to emulate 

industrial experiences among students. Projects involved collaboration with industry partners who acted as 

clients in those projects. They provided students with project direction and resources. Students were able to 

negotiate and change project scope, development methods, and techniques during project execution time. Johns-

Boast and Flint (2013), Khakurel and Porras (2020) and many others reported on their initiatives and positive 

observed results in promoting technical and professional skills among students through the adoption of capstone 

project with real industry partners. 

 

Although there are a lot of positive traits associated with teaching code review in capstone subjects, previous 

studies showed students feel uncomfortable to share their work or to provide feedback to peers due to concerns 

related to coding experience, validity, reliability, bias, and fairness (Mulder et al, 2014; Indriasari et al., 2020).  

In this sense, an automated code review process could offer students the potential to access timely, consistent, 

scalable, evidence-based, and independent feedback about their coding artifacts. By (partially) delegating code 

review responsibilities to AI-based tools, students can review and reflect on their coding practices without 

feeling exposed. Several previous studies investigated the use of automated code review in software engineering 

(Indriasari et al., 2020; Kaufmann et al., 2022; Farah et al., 2022), however, to the best of our knowledge, no 

previous work has investigated the use of generative AI combined with assessment checklists in educational 

code review processes.  

 

Current study 
 

The current study aimed to understand the use of generative Artificial Intelligence to automate a peer review 

process to enhance CS students’ engagement with code review in industry-based subjects. We investigated 2 

research questions related to this aim: RQ1) Does a genAI-powered peer review process improve CS students’ 

engagement and participation in code review?; RQ2) How effective was genAI at performing a checklist-based 

assessment of code? 

 

Methods 
 

An experimental research design was used in our investigation. Our method included research design, data 

collection and data analysis. These steps are presented in Figure 1. 

 

Research design 
 

The Master of Information Technology (MIT) hosted by the University of Melbourne is designed for those 

interested in a career in technical IT. The course is organised in specialisations in key areas of Information 

Technology: (i) Computing; (ii) Distributed Computing; (iii) Human-Computer Interaction; (iv) Artificial 

Intelligence; and (v) Cyber Security. In the second and final year of the course, students from all streams (or 

specialisation areas) can choose to complete a software project as a capstone subject.  

 

 
 

Figure 1. Research Procedure 

 

The software project subject gives students in the MIT experience in analysing, designing, implementing, 

managing, and delivering a software project related to their stream of IT specialty. The aim of the subject is to 

guide students in becoming an independent member working within a team over the major phases of IT 



 
 

development, giving hands-on practical opportunity to apply the topics seen throughout their degree. The 

subject also gives students a concrete understanding of teamwork processes and tools that underpin the practical 

aspects of developing software. Students work in teams of five to conceive, analyse, design, implement, test, 

and maintain a software product for a real-world industry partner. In this subject, students use GitHub, a cloud-

based source code repository, to store, track and collaborate on software projects. Additionally, quality 

assurance processes that include code reviews are taught and assessed in the subject. 

 

Checklist-based code review is one popular approach that can be an effective way to assist inexperienced 

students to learn code reviews since this process guides students to focus on well-known coding issues or 

defects (Dunsmore et al., 2003). Checklists can serve as control mechanisms to mitigate the variability in review 

processes. Without it, peer review could be influenced by individual biases, knowledge gaps, or inconsistencies 

in approach. In this sense, we adopted checklists to support the design of an automated code review process that 

is consistent and explainable. Our code review checklist is adapted from Mäntylä & Lassenius (2008), and it 

provides a comprehensive qualitative classification of code review (Figure 2a). Evolvability defects were 

classified in three main categories: (i) documentation defects, (ii) visual representation defects, and (iii) 

structure defects. Functional defects were classified in five groups: (i) new functionality, (ii) resource defects, 

(iii) check defects, (iv) interface defects and, (v) logic defects. 

 

After designing the code review criteria list, we created a spreadsheet with selected criteria list to support 

students documenting peer-to-peer review  and engineered a prompt (Figure 2b) to automate the process using 

the OpenAI GPT Large Language Model (LLM) which is a genAI tool. The reference to genAI in our work 

means the use of OpenAI GPT model. In the peer-to-peer review, students must complete the spreadsheet with 

their notes (or reviews). To maximise the efficiency of our suggested automated code review process, we 

integrated our designed prompt with GitHub Actions so students would be able to perform code reviews 

whenever they decided to, without changing their existing coding process (or having the need to learn new 
technologies). This process is detailed in Figure 3. The GitHub Actions, which are scripts that support the 

design and creation of automated workflows on GitHub, was developed as part of this project and utilise 

OpenAI’s v2 GPT API (gpt3.5-turbo). 

 

Students were not asked to perform any additional task in our suggested genAI-powered code review other than 

existing ones: (i) write source code; (ii) commit and push source code to GitHub repository (submit code to 

cloud); (iii) approve pull request. Pull requests let software engineers tell others about changes in the source 

code they’ve pushed (submitted) to a repository on GitHub. Once a pull request is opened, students within the 

same team can discuss and review the potential changes and add follow-up commits before submitted changes 

are merged with other codes. In this subject, once students approved pull requests (or integrations between new 

code with existing ones), we initiated the code review process with generative AI.  

 

 
 

Figure 2. Code Review Criteria List (a) (adapted from Mäntylä & Lassenius (2008)) and prompt created 

to automate code review process with generative AI (b) 

 

Participants  
 

Participants were recruited via Canvas Learning Management System (LMS) and provided informed consent 

(Ethics approval #24272). The sample included a total of 80 (out of 170) students enrolled in a Software Project 



 
 

subject, with 56 males and 24 females. All participant students worked in teams of five students (16 groups 

decided to participate in this experiment). Students who did not participate in the study had the same experience, 

but their data was not collected or analysed as part of this study. 

 

To motivate students to engage in code review processes, in week 6 the subject coordinator delivered a standard 

lecture on the importance of software quality and the role of code review in software development. Two 

practical demonstrations of a code review process involving the use of generative AI (gpt3.5-turbo, in our study) 

and Github Actions, and peer group review were conducted. Lastly, the assessment checklist for development 

sprints 2 and 3 was explained to students and updated to include 2 points (out of possible 15 for each 

development sprint) for quality of conducted code reviews and reflections on them. 

 

 
 

Figure 3. Code review process adopted in our subject. 

 

Data collection  
 

Participants were randomly assigned to two groups: Group A were asked to conduct a peer code review in week 

8 and our an automated genAI-powered code review in week 10; Group B were asked to conduct our an 

automated genAI-powered code review in week 8 and a peer code review in week 10. Students asked to perform 

peer code review made use of the provided code review checklist to inspect their codes and documented the 

code review results on spreadsheet provided on the Learning Management System (LMS). Students using the 

automated process didn’t have to fill in the spreadsheet as their code review results were documented and 

available on their GitHub repositories. At the end of the teaching semester (week 12), students were asked to 

submit a 400-words individual self-reflection report organised in two subsections: (i) Personal reflections on 

professional skills development (not included in this paper); (ii) Personal reflections on technical skills 

development through the use of GitHub Actions and GPT (our suggested development workflow): did you 

receive insightful/meaningful feedback from genAI? To what extent do you believe genAI helped you improve 

your coding skills? This report was worth 8 points (out of possible 20 for individual assessment component). 

 

Data analysis 
 

The data was analysed using an iterative analysis method, which moves from a general high-level analysis to 

more specific ones. In the current study, we evaluated the following interactions relevant to the research 

questions: overall number of code reviews performed, overall number and types of code defects identified 

across different code reviews’ approaches, and severity of code defects identified across different approaches. A 

series of plots were created to examine the distribution of code reviews and how students interacted with 

different approaches across the two weeks of data collection for the research questions, which revealed patterns 

of engagement and effectiveness. 

 

Results 
 

The results are presented in three sections: overall number of code reviews performed, overall number and types 

of code defects identified and fixed across different code reviews’ approaches, and severity of code defects 

identified across different approaches. We move from high-level analysis to more detailed ones in the 

subsections. Additionally, some reflections by students on the use of ChatGPT, which is beyond the prescribed 

code review methodology, are also provided. 

 



 
 

Overall number of code reviews performed 
 

Overall, there were 36 code reviews performed by 16 groups in the subject. During week 8 there were a total of 

19 code reviews performed. 13 groups did that using genAI, 6 groups performed peer reviews. In week 10, there 

were 17 code reviews conducted of which 12 groups performed code reviews using genAI while 5 conducted 

peer reviews. The use of genAI for code review was significantly larger in the subject with 70% of all reviews 

conducted using genAI. We also noted that a few teams performed multiple code reviews using genAI, despite 

only being required to do a single review, while others continued to utilise ChatGPT outside of the GitHub 

action to better understand their code. 

 

Based on student reflections, we believe students’ felt encouraged to engage in code review activities as our 

genAI-powered code review process was easy-to-use and provided timely feedback:  

 

…Firstly, ChatGPT frees up our hands and gives us more time for other tasks. Our team 

conducted a code review using ChatGPT in sprint 2 and a peer review in sprint 3. This deeply 

impressed me with the power of AI, which can provide good answers in a very short time. We 

spent an afternoon in the peer review, and ChatGPT was completed in just a few seconds, which is 

incredible. It is also a patient mentor, its feedback is very gentle and inspiring, giving high 

recognition and appreciation to our code, which also makes our team feel very happy.  

 

Overall number and types of code defects identified and fixed across different code reviews’ 
approaches  
 

After looking at overall number of code reviews performed during our study, we focused on types of code defect 

identified by students. GenAI-powered reviews were able to identify a significantly higher number of issues 
(Figure 4) with an average of 26.713 (SD=27.412) issues identified compared to 9.512 (SD=3.013) in peer 

reviews. A significant difference between groups was observed in our t-test (p-value=0.01). This difference 

suggests that genAI is able to provide a more thorough and detailed review of student’s code, finding issues that 

human reviewers may overlook. It also enabled students to promptly identify, understand, discuss, and address 

code issues, fostering a more interactive and engaging learning process:  

 

…ChatGPT was instrumental in improving my coding skills. The AI was quick to provide 

feedback, suggestions, and alternatives to the code we wrote. ChatGPT is able to understand our 

code and explain the issues in our code. This not only helped me correct my mistakes, but also 

deepened my understanding of coding principles involved… 

 

 
 

Figure 4. Total number of issues identified 

 

Six out of the thirteen teams (week 8) reported going beyond the recommendations of the genAI review and 

implementing further enhancements to their code. Students commented in their self-reflection reports about the 

advice received from genAI on code defects identified, and evaluations of the accuracy and value of reviews 

provided by genAI: 

 

…During the code review process, I found ChatGPT's feedback somewhat beneficial. One notable 

instance was when it highlighted the security concerns about the JWT algorithm we were using. 

This feedback prompted us to research and implement a more secure algorithm for our website, 

effectively enhancing its security… 

 

Figure 5 shows the average number of issues identified by both approaches, categorised by the type of issue 



 
 

identified (consistent with Figure 2a). This classification was extracted from data provided by students and from 

responses generated by genAI. GenAI was able to identify more issues related to documentation, visual 

representation, and checks, while peer review was able to identify more structural and logic issues. Resource 

and interface issues were minimal for both methods. 

 

 
 

Figure 5. Mean number of issues identified in each code review approach. 

 

One possible explanation for observed differences in logical and structural issues is due to the deeper 

understanding of the project context that human reviewers typically have, as previously discussed. Participants 

in the project team have a better understanding of the project’s objectives, requirements, and overall context. 

This knowledge allows them to make better judgements whether or not new coding functionalities align with the 

project’s direction. Moreover, code review often involves subjective judgments such as decisions about overall 

design. These judgments can vary based on the specific and contextual needs of a project. Peer reviewers, with a 

comprehensive understanding of the project, are usually better equipped to make these judgments. 

 

Additionally, human reviewers are better at evaluating relationships between code structure and software 

performance. Software performance often depends on the efficiency of IT frameworks and can’t be assessed by 

looking at code complexity in isolation. An AI tool based on genAI might not be able to fully assess the 

efficiency of an algorithm or the relevance of a code structure without broader project context. Peer reviews can 

provide a more holistic evaluation of code by using their understanding of project requirements, specific use 

cases, and the trade-offs between different algorithms and project technologies in use. Another way to categorise 

the issues identified is to consider the accuracy of the review. After extracting information from the student data, 

we could see genAI outperformed peer review in terms of the total number of issues rectified by authors, 

registering a mean of 9.165 (SD=14) by genAI compared to a mean of 5.667 (SD 2.16) in peer reviews. This 

data suggests that while human reviewers demonstrate greater expertise in spotting complex issues, genAI’s 

swift and immediate feedback facilitates the faster rectification of a greater number of issues. Additionally, 

simpler issues are quicker to be addressed. This is further corroborated by the variance in the number of issues 

identified according to severity highlighted in the next section. 

 

The large standard deviation in the number of issues fixed for genAI-powered reviews is mirrored in reflections 

from several students who found that feedback received from genAI was very generic: 

 

…I found the Peer-to-Peer code review to be more helpful than the ChatGPT code review. While 

we may be less knowledgeable in analyzing code compared to ChatGPT, I felt that I learnt more 

from discussing coding decisions as a team. When reviewing another member’s code, I could 

listen to why my team member made a specific decision and provide my suggestions. I felt that 

the feedback received by ChatGPT was also very generic, such as adding more descriptive 

comments or optimising the efficiency if necessary. While this can be partially attributed to the 

code not having any logic defects for ChatGPT to comment on, I think it also struggles with 

providing specific feedback with limited context… 

 

This issue is partially caused by the fact that students were unable to provide the entire project source code to 

genAI, which meant that genAI couldn’t have enough context of the project to properly evaluate specific parts 

of the software solution separately and independently. Additionally, the rubric based prompt using Github 

Actions did not allow for students to provide additional context, however several students went beyond the 

prescribed use of genAI and used ChatGPT to further debug and understand their code in a more conversational 

way: 

 



 
 

…The use of ChatGPT also provided impressive feedback on coding practices. It offered not only 

suggestions for code improvements, debugging, and optimizations but also made our codes more 

compatible. The ability to transfer Python to Lua from Farmbot OS to Raspberry was brilliant and 

impressive. The help from ChatGPT provided perfect solutions for our problems and saved 

months of time in coding and debugging. The AI’s ability to explanations and suggestions also 

helped me learn technical skills faster in web app development and server construction… 

 

Despite this limitation, students observed ChatGPT was great for troubleshooting warning messages. In most 

cases, ChatGPT could help resolve errors when provided with a block of code and a warning message. ChatGPT 

was also useful in providing multiple code examples like tutorials or documentation summary related to specific 

inspected source code (maximising abstraction and minimising complexity to students).  

 

Severity of code defects identified across different approaches 
 

GenAI-powered reviews were able to identify a larger number of trivial issues but didn’t perform as well in 

identifying critical ones (Figure 6). These results are consistent with previous findings that suggest peers have a 

more complete understanding of the project and its involved technology, while genAI performed reviews of 

parts of the whole, without context. 

 

 
 

Figure 6. Mean number of issues identified by severity. 

 

Similar to the previous categorisations of issues, the severity of the issue identified was evaluated by students 

and the researchers did not verify the students’ assessment. 

 

Other uses of ChatGPT beyond the rubric based review 
 

Many students found the use of genAI review to be a transformative experience and continued to use ChatGPT 

independently to help them understand code and improve their skills. One of the uses by these students was to 

help understand complicated functions, especially those from pre-existing code:  

 

During the semester I was assigned with working on a pre-existing file that had legacy code. I 

wasn’t exactly sure what a function within the source code was doing so I asked GPT, which 

thoroughly explained the code to me and suggested ways to document it so other members could 

also understand that function. 

 

This last comment highlights student’s tendency to trust ChatGPT’s interpretation of code. 

 

I found great utility in ChatGPT when it came to deciphering code written by previous teams in 

the handover code. At times, the code was messy and used packages I was unfamiliar with. 

ChatGPT was able to identify these packages and when prompted, provide me with a concise 

explanation of what it does and how to use it. The way that ChatGPT was able to understand 

snippets of code easily was astounding and useful. 

 

Discussion 
 

In this paper we investigated how the use of an automated peer review process could enhance CS students’ 

engagement with code review in industry-based subjects. The research questions allowed us to examine 

students’ level of interaction with different code review approaches (RQ1), and the effectiveness of a genAI 



 
 

performing a checklist-assessment of code (RQ2). We used a combination of statistical analysis and self-

reported data to examine the research questions. 

 

For the first research question, we identified meaningful patterns for engagement and participation in code 

review across both approaches. We found that genAI stimulated student engagement in the code review process, 

demonstrating a higher average number of identified issues compared to the peer review process and a higher 

average number of those issues identified by genAI were fixed. This aligns with results reported in previous 

studies that used automated peer feedback (Farah et al., 2022). Interestingly, inaccurate feedback and 

misunderstandings of project requirements encouraged students to revisit the inspected code and stimulated 

further critical discussion. GenAI feedback created a dynamic learning environment that encouraged students to 

understand, discuss and make decisions on how to address issues, fostering a more interactive learning process. 

 

Our analysis also showed that students continued to engage with genAI beyond the code review process by 

asking ChatGPT to explain unclear code written by previous teams to them and by feeding in error and warning 

messages to ChatGPT. The use of genAI in code reviews has the potential to minimise challenges in peer review 

identified in previous studies that showed students feel uncomfortable to share their work or to provide feedback 

to peers (Mulder et al., 2014; Indriasari et al., 2020). By using genAI, students felt less exposed and more 

supported to engage in reviewing processes. This could be a useful tool to initially focus on students’ technical 

code reviewing skills, and then adding layers related to teamwork skills later (e.g., how to provide and receive 

feedback). 

 

In answering the second research question, we found that genAI-powered code reviews can identify a larger 

number of code issues in a very short time, leading to more fixes, but human reviewers demonstrate superior 

proficiency in identifying logical and structural issues. This is most likely the result of the human reviewer 

having a much broader understanding of the code, where the context of the project and the understanding of its 
specific requirements play a significant role in code review (Henderson, 2020). This suggests peer review and 

automated code review could complement each other well, as indicated in previous research using chatbots to 

support peer review (Farah et al., 2022). There is also potential to address this issue with the ability of GPT-4 to 

handle much larger input data so that the student can provide additional context to the system. 

 

This study has two main limitations. First, genAI can only review individuals’ own submitted codes. This 

process lacks the collaborative learning potential inherent in peer code reviews. Peer code reviews provide an 

opportunity for team members to understand sections of the code they did not directly work on. To address this 

limitation, next semester we plan to update our code review process to suggest students to review received 

feedback from genAI together. Second, we acknowledge that genAI-powered feedback is limited and can be 

generic or inaccurate. The value of genAI-powered review is not purely in the feedback it provides to students 

but more significantly in its capacity to prompt students to discuss and critically re-evaluate their code. Instead 

of merely accepting the feedback from genAI, students will be challenged to validate received feedback, 

promoting a more thorough and in-depth engagement with their code and the reviewing process. Despite its 

limitations, the use of genAI in code review can still serve as a valuable tool to drive student engagement. 

However, students must continue to lead and have control over this process and related project decisions.  

 

Conclusion 
 

This study provides a better understanding of the importance, capability, and meaningfulness of a genAI-

powered peer review process in improving CS students’ engagement and participation in code review. We found 

that the genAI review stimulated student engagement in the code review process, demonstrated by a higher 

number of genAI powered reviews being conducted and a higher average number of identified issues compared 

to the peer review process. Automated code reviews could identify a larger number of code issues in short time, 

leading to more fixes, but peer reviewers demonstrated superior proficiency in identifying logic and structure 

issues. Students had a better understanding of project context and involved technologies and can inspect code 

broadly. 

 

This research contributes to the field of educational technology research and software engineering with the use 

of an approach that combines statistical and self-reported data to provide a meaningful interpretation of code 

reviews’ results. This research has implications for both practice and research related to using generative AI for 

the automation of peer reviews based on the use of checklists, rubrics, and other assessment instruments.  
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