
ASCILITE 2023
People, Partnerships and Pedagogies

IDE vs. pen-and-paper showdown - Performance and
perceptions of testing first-year IT students’ programming
skills

David Harris, G. Stewart Von Itzstein, Douglas Kelly and Elizabeth Smith
University of South Australia

This study analysed first-year IT students' performance and perceptions of using Integrated

Development Environment (IDE) versus pen and paper (P&P) based programming testing

methods. 68 participants completed two programming tests using both testing methods, and the

results were evaluated on complexity, quality and other criteria. No significant difference was

observed in the average scores between the two test methods. However, IDE testing showed fewer

syntax errors and lower cyclomatic complexity, indicating the potential advantages of IDE's error-

checking. IDE tests exhibited higher variability in student performance, suggesting varying

comfort levels with the test environment. Additionally, a weaker correlation existed between

actual and perceived performance in IDE tests, highlighting challenges in self-evaluation within a

digital framework. Most students preferred IDE-based testing, citing efficiency, user-friendliness,

and real-time feedback. Nonetheless, a minority recognised the value of P&P tests for

demonstrating deep syntax understanding. This research enhances our understanding of

programming pedagogy and assessment.

Keywords: Programming, Assessment, paper vs. computer

Introduction and background

Teaching programming to first-year students in an Information Technology (IT) degree program can be a

challenging task due to several factors. One challenge is the requirement for students to perform higher-level

thinking early in the learning process as programming requires an understanding of rigid syntax and commands

(Kelleher & Pausch, 2005). Learning programming also necessitates understanding diverse areas like logic,

mathematical thinking, algorithms, data flow, abstraction, indirection, etc. which can inundate the learner,

leading to heightened stress and frustration, resulting in increased cognitive load (Stachel et al., 2013). This can

be particularly difficult for students who are new to programming and may not have prior experience with

problem-solving, abstraction, and critical thinking in this domain (Medeiros et al., 2018). Consequently, there is

a need for higher-order understanding before lower-order understanding is fully established.

Given the challenges students encounter while learning programming, it is anticipated there will be a rise in the

adoption and dependence on generative AI tools such as ChatGPT and Copilot as they become more widely

accessible. Consequently, the assessment of authentic individual comprehension of the theoretical concepts

behind programming becomes even more critical. The use of computer-based tests, using Integrated

Development Environments (IDEs), is a common method for assessing student programming foundation

knowledge and it is the students preferred testing method over P&P programming tests (Barros, 2018). P&P

programming tests are still used but are perceived as an artificial scenario that may not fully assess students’

ability to develop program code (Bennedsen & Caspersen, 2007). Recent research suggests that there is no

significant difference in student test performance between using an IDE or a P&P exam (Corley et al., 2020;

Öqvist & Nouri, 2018). Consequently, P&P-based tests still offer a suitable measure of students' programming

ability and provide various advantages, including evaluating their capacity to reason about code without relying

on IDEs, assessing theoretical understanding, reducing susceptibility to plagiarism, and being easier to invigilate

compared to IDE tests. For these reasons, P&P programming tests continue to be used in the first year of the IT

programs at the University of South Australia (UniSA). While previous research has compared student

performance in IDE and P&P programming tests (Corley et al., 2020; Öqvist & Nouri, 2018), as well as

examining students preferred testing method (Barros, 2018), the authors of this study aim to further explore

students' perceptions of performance between these two testing methods and their relationship with IDEs and

the support they provide in comparison to P&P-based testing methods. This study aims to address the following

research questions: RQ1.How do students perceive their performance in IDE-based programming tests

compared to paper-based testing methods? RQ2.What is the nature of the relationship between students and

IDEs in terms of their perceived support and effectiveness, in contrast to P&P-based testing methods?

Methodology

This study explores how first-year IT students perceive and perform in IDE-based vs P&P programming tests at

UniSA. It also explores student views on the effectiveness of these testing methods and their relationship with

IDEs in comparison to traditional P&P-based tests. The study was conducted over two semesters, involving 68

student participants. Students were asked to complete two programming tests of comparable complexity. One of

these tests was administered via an IDE (IDLE) while the other test used a P&P method. The order of the tests

was randomised to minimise any possible order effects, and the P&P and IDE questions were swapped to avoid

any question bias dependent on the testing mode. All students from a first-year programming class were invited

to partake in the study during the last week of the semester. Tests were performed under exam-like conditions

and students were given a maximum of 30 minutes per test. The evaluation of these tests was performed by two

independent markers, using a detailed structured rubric to ensure the consistency and impartiality of the scoring

process. The rubric allocated marks based on standard marking criteria such as syntax errors, infinite loop

occurrences, Big O complexity, cyclomatic complexity, unnecessary variable usage, coding style and layout,

and encapsulation. Upon completion of both tests, students were asked to participate in a survey. The survey

incorporated Likert scale questions to assess the students' perceived performance on each test, as well as their

testing preferences. Additionally, students were prompted to provide open-ended text responses to enable a

more nuanced exploration of their experiences and perceptions. These responses were subsequently analysed

using thematic analysis to identify patterns and key insights. This paper presents the preliminary findings from

this study.

Results and Discussion

Student Test Performance and Perceived Performance

This study compared the performance of students (n=68) sitting similar IDE and P&P-based programming tests.

The average score on the IDE test was 11.32 (out of 15), which is slightly lower than the average P&P test score

of 11.91 (out of 15). However, a paired two-tail t-test found no statistically significant difference between these

means (t=1.15, p-value = 0.253), suggesting the observed difference could be due to chance. There is also a

modest positive correlation between the scores from the P&P test and the IDE test with a correlation coefficient

of 0.242. This suggests that students who performed well on the P&P test generally also performed reasonably

well on the IDE test and vice versa. This aligns with the work of Öqvist and Nouri (2018) and Corley et al.

(2020) who also found there was no significant difference in students’ performance between IDE and P&P tests.

In examining the comparative syntax errors and cyclomatic complexity between IDE vs P&P- test performances

of students, this study found the average number of syntax errors was significantly lower when using an IDE

(mean = 0.31) compared to P&P (mean = 1.09), as indicated by the t-test (t(67) = 5.82, p < 0.001). This suggests

that students made fewer mistakes when programming in an IDE, likely due to its built-in syntax checking.

These results also align with the findings of Corley et al. (2020) who observed students demonstrated fewer

syntax errors when using the IDE testing method. Cyclomatic complexity measures the number of linearly

independent paths through a program's source code. Ideally, the value should be as low as possible to solve the

problem, with a score of one being a single path from beginning to end. In the present study, mean scores for

cyclomatic complexity were slightly lower in the IDE testing method (mean = 5.85) than in the P&P testing

method (mean = 6.41), t(67) = 1.82, p = 0.073. This could indicate that the use of an IDE leads to simpler, more

streamlined code. This evidence supports the view that IDEs, with their syntax-checking capabilities, offer

substantial advantages for student programmers over P&P methods.

In terms of variability in scores between IDE and P&P tests, there was higher variability in scores for the IDE

test (standard deviation = 4.02) than the P&P test (standard deviation = 2.56), implying a wider range of student

performance on the IDE test. Additionally, score distributions for both tests were negatively skewed, indicating

more students scored below the mean. This skew was more pronounced in the IDE test (-1.53 vs. -1.33). The

higher variability in scores for the IDE test may indicate that some students are more comfortable or familiar

with this testing environment, leading to higher scores, while others may be less comfortable or familiar, leading

to lower scores. Thus, the IDE might enhance performance for some students while potentially hindering others.

The reason the IDE may hinder some student’s performance is due to the possible higher cognitive load

associated with IDE overheads of the interface, debugging, and navigating files as suggested by Stachel et al.

(2013).

This study also found a moderate positive correlation (r = 0.412) between students' actual scores and their

perceived performance in traditional P&P tests, indicating that those who performed better also rated their

performance higher. This points to a level of self-assessment accuracy in traditional test settings. Conversely,

the correlation between actual scores and perceived performance on the IDE tests was weaker (r = 0.228). This

suggests that students with higher IDE scores only somewhat rated their performance better, hinting at

challenges in self-evaluation within a digital testing framework. This is surprising, considering that one might

expect students to be more confident in assessing their performance when they can use the built-in error-

checking capabilities of the IDE. However as mentioned above, the IDE test scores had a higher variability, also

suggesting some students may struggle with the added complexities of the IDE environment which could also

explain why there is a weaker correlation between actual and perceived performance in the IDE setting.

Quantitative Survey Responses

Following completion of the IDE and P&P-based tasks, all students were surveyed on their preferred testing

method. Student responses to the survey showed there was a significant preference for the IDE-based testing

method, with 92.5% (62 out of 67) of participants expressing this preference. Only 7.5% (5 out of 67) favoured

P&P-based testing. These results align with the findings of other studies including Barros (2018). In the survey,

students were also asked to evaluate the impact of syntax highlighting on learning to program, a key feature of

IDEs. The results show a majority of the participants found syntax highlighting beneficial with 76.5% (52 out of

68) of students reporting that syntax highlighting helped 'a lot' or 'a little', in contrast to 17.6% (12 out of 68) of

participants suggesting syntax highlighting offered 'no help at all' or 'very little' help and 5.9% (4 out of 68)

were 'unsure' if the syntax highlighting provided any benefit. Consistent with these findings, a significant

number of students 75% (51 out of 68) indicated that the IDE test provided more time to consider and develop

their responses, compared to 23.5% (16 out of 68) who thought the P&P-based test provided greater opportunity

to develop solutions. Moreover, most students also indicated they could develop answers more quickly in the

IDE test, with 72.1% (49 out of 68) compared to 27.9% (19 out of 68) indicating a solution was derived more

quickly during the P&P-based test. Students were also asked which testing method better reflected their

problem-solving abilities and programming skills. The results showed that the majority thought the IDE test

better reflected both their problem-solving abilities (66.2%, 45 out of 68) and programming skills (93.8%, 61

out of 65).

Finally, the self-evaluation of performance on both tests was examined. Notably, there were no 'very poor'

responses for either test approach. For the P&P-based test, most students felt their performance was 'okay'

(36.8%) or 'good' (33.8%), with 'excellent' being the least selected option (13.2%). In contrast, for the IDE test,

the majority rated their performance as 'excellent' (39.7%) or 'good' (29.4%), with 'okay' (19.1%) and 'poor'

(11.8%) being less common. These results suggest that students generally prefer IDE-based testing and find the

syntax highlighting useful, but also that this approach allows for more thoughtful consideration and quicker

answers. As a result, participants feel that using an IDE better reflects their problem-solving abilities and

programming skills.

Qualitative Survey Responses

To further understand the reasons behind these preferences students were also asked to respond to two text-

based questions. Firstly, students were asked to discuss why they selected their preferred testing method (n=63)

and secondly, regarding their least preferred test approach, what impacted their ability to answer the question

(n=55). For the first question, on why students selected their preferred testing method, a thematic analysis was

performed on the 59 text responses received from 92.5% (62 out of 67) of participants who selected the IDE as

their preferred testing method. Four main themes were identified and are discussed below along with the

percentage of responses that mentioned this theme. IDE Efficiency and User-friendliness (100% of

responses): All students expressed appreciation for the efficiency and user-friendliness of IDEs. For instance,

one student pointed out "The computer-based test was helpful as it allowed me to easily navigate through and

write the code faster without thinking too much about the presentation and indentation." This quote reveals how

an IDE's features can simplify the coding process and allow students to focus more on coding logic rather than

formatting or presentation. Physical and Cognitive Comfort (69.5% of responses): Physical and cognitive

comfort was a recurring theme in the responses. A student stated, "I type faster than I can write. It's harder to

undo mistakes on paper. My wrist hurts. Computers save me from my handwriting." This response is indicative

of how physical comfort can be a significant factor when it comes to choosing between handwriting or typing

code. Cognitive comfort also plays a significant role, as illustrated by another student's comment: "The IDE

gives me real time feedback. It is difficult to remember all syntax so having IDE to help with that negates this

potential waste of time.". Relevance and Applicability (42.4% of responses): The practical relevance and

applicability of using an IDE was also a significant factor for the students. One student stated, "I think the

computer based test best tests a student's ability to program and solve problems in the real world." This student,

along with many others, recognised the value of being proficient in an IDE given its widespread use in

professional settings. P&P Evaluation (23.7% of responses): Even though the IDE was the preferred test

method, some students found value in P&P tests. As one student noted, "… both approaches I like as I feel like

paper based shows off someone's actual knowledge and syntax without needing any help from the program. It is

also slower to write the answer so it gives you time to think and consider the code more." This quote highlights

the perceived benefits of paper-based evaluations, including a slower pace, which allows for more thoughtful

consideration of the code, and the opportunity to demonstrate an understanding of syntax without any assistance.

These quotes illustrate the primary reasons students prefer IDE-based testing while still acknowledging the

potential benefits of P&P evaluations. Those students who preferred the P&P tests (n=4) also provided text

responses on why they chose this as their preferred test method. For example, one of the key advantages of

P&P-based testing articulated by students is the opportunity to note down and organise their thoughts more

efficiently. As one student notes, "For the paper questions, I was able to break down the questions and write

down the key information I have needed to answer question, writing on paper helped me write down ideas on

how to answer." This aspect of handwriting enables an easy visual representation of thoughts, aiding in

problem-solving. Another aspect reflected in the responses, is the alleviation of anxiety over minor syntax

errors, allowing students to concentrate more on the core logic. One student mentioned, "Less stressed about

minor syntax errors and focused on the problem-solving aspect." This brings into focus how P&P-based testing

can foster a focus on problem-solving, which is the crux of programming.

For the second text-based survey question, on how students least preferred test approach impacted their ability

to answer the programming question, a thematic analysis was performed on the 52 text responses received from

the participants who selected the IDE as their preferred testing method. Four main themes were identified and

are discussed below along with the percentage of responses that mentioned this theme. Lack of Interactive

Coding Features (59.6% of responses): This theme appeared frequently in the responses, with students

expressing frustration about not being able to test and debug their codes in real time. As an example, one student

straightforwardly stated, "Testing code - inability to do this with paper-based." Similarly, another student

expressed, "Not being able to see if it worked was an impact because I wasn't sure if I completed it correctly."

The lack of real-time testing significantly impacts the students' confidence in their solutions and forces them to

work more on assumptions. This represents a departure from the interactive testing environment they are

typically accustomed to when using IDEs. Usability Constraints (51.9% of responses): Writing codes on paper

inherently carries usability constraints such as the inability to modify written text, which proved to be a major

source of frustration for students. One student articulated this challenge as, "Not being able to delete a line of

code that I feel I stuffed up, I had to cross it out which sort of broke my focus." This comment demonstrates how

the physical limitations of P&P testing could disrupt students' thought processes and make the process of

correcting errors distracting. Recall and Understanding (48.1% of responses): The P&P-based approach

seemed to place an additional burden on students, as they had to rely more heavily on their memory and

understanding of programming concepts without the help of IDEs. One student commented, "In paper-based,

it's more on remembering what you learned from your lessons and applying it to the test questions." This remark

clarifies the need for a deeper understanding of programming concepts and a stronger recall of syntax and

functions with P&P-based testing. Visualisation and Comprehension Challenges (44.2% of responses):

Without the colour-coding and auto-indentation features of IDEs, students found it challenging to visualise and

comprehend their codes. One student shared, "No coloured syntax words like the computer - difficult to

remember where indents are." This remark emphasises the importance of IDE features in enhancing code

readability and comprehension, which are vital for effective coding. In addition, another student confessed, "I

think because I am slower to type the code compared to writing it, it seems as though I struggle to visualise my

ideas before they disappear." This underlines the struggles students face in visualising their coding logic and

thoughts in the absence of visual aids like colour-coding and auto-indentation. These responses demonstrate

how the shift from IDEs to a P&P-based testing approach seems to create significant challenges for students.

These challenges underscore the importance of IDE features not only for enhancing coding efficiency but also

for supporting students' understanding and problem-solving processes in programming.

For students who preferred the P&P-based testing method, one student commented on their ability to facilitate

and capture the thought processes of students. A student revealed, "If the paper testing was used, the students

could write down their thinking if they don't know what exact code they need to use but possibly get marks to

show they know what they need to do to get the answer." This suggests that P&P tests allow for partial credit for

problem-solving skills and understanding, even when the exact code escapes the student's memory. Moreover,

P&P-based tests seem to alleviate technical issues that can cause undue stress and wasted time during computer

tests. One respondent illustrated this point with the quote, "Syntax errors, making new files ensuring the

technology was working just added more time required to get everything working". This statement emphasises

how technological problems can distract from the main task of demonstrating coding understanding and

problem-solving skills. However, the pitfalls of P&P-based testing are not completely overlooked by these

students. They still acknowledge issues such as syntax errors and the challenge of remembering language-

specific details as significant drawbacks. While there are clear advantages to using IDEs for testing students'

coding abilities, there are also several advantages to continue using P&P-based tests despite the difficulties and

drawbacks they pose. For example, examination integrity as P&P-based tests minimise the potential for

cheating or using unauthorised resources during the exam, assessment of fundamental understanding as P&P

tests require students to recall & apply concepts without the aid provided in IDEs, and, organising P&P tests can

be easier logistically, especially for large classes where access to computer pools is an issue

Conclusion

The findings from this study provide insights into students' performance, perception, and preferences when it

comes to IDE and P&P-based programming tests. No significant difference was observed in the average scores

between the two methods, yet fewer syntax errors and more streamlined code were noted in the IDE testing

environment. However, a higher variability in IDE test scores and a weaker correlation between actual and

perceived performance suggests some students may grapple with the complexities of the IDE environment, such

as understanding the interface, debugging, and navigating files. In addition, the results show most of the

participants found IDE syntax highlighting beneficial in terms of reducing errors and better reflecting their

problem-solving abilities and programming skills. The research questions were addressed in this study with

RQ1 showing that students think they know more and do better with the IDE even if that is not the case in the

outcomes of the test. RQ2 showed that students prefer the IDE testing mode even though generally there were

no real differences in the outcomes across the testing modes. This study underlines the importance of

understanding students' interaction with testing methods and the role of self-assessment in these settings,

providing insights for educators and curriculum developers in the field of computer science and programming.

References

Barros, J. P. (2018). Students' perceptions of paper-based vs. computer-based testing in an introductory

programming course. CSEDU 2018-Proceedings of the 10th International Conference on Computer

Supported Education. Vol. 2. SciTePress, 303–308. https://doi:10.5220/0006794203030308

Bennedsen, J., & Caspersen, M. E. (2007). Assessing process and product: a practical lab exam for an

introductory programming course. Innovation in Teaching and Learning in Information and Computer

Sciences, 6(4), 183-202. https://doi.org/10.1109/FIE.2006.322434

Corley, J., Stanescu, A., Baumstark, L., & Orsega, M. C. (2020). Paper or ide? the impact of exam format on

student performance in a cs1 course. Proceedings of the 51st ACM technical symposium on computer

science education. 706–712. https://doi.org/10.1145/3328778.3366857

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming

environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83-137.

https://doi.org/10.1145/1089733.1089734

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A systematic literature review on teaching and learning

introductory programming in higher education. IEEE Transactions on Education, 62(2), 77-90.

https://doi.org/10.1109/TE.2018.2864133

Öqvist, M., & Nouri, J. (2018). Coding by hand or on the computer? Evaluating the effect of assessment mode

on performance of students learning programming. Journal of Computers in Education, 5, 199-219.

https://doi.org/10.1007/s40692-018-0103-3
Stachel, J., Marghitu, D., Brahim, T. B., Sims, R., Reynolds, L., & Czelusniak, V. (2013). Managing cognitive

load in introductory programming courses: A cognitive aware scaffolding tool. Journal of Integrated Design

and Process Science, 17(1), 37-54. https://doi.org/10.3233/jid-2013-0004

Harris, D., Von Itzstein, G. S., Kelly, D. & Smith, E. (2023). IDE vs. pen-and-paper showdown - Performance and
perceptions of testing first-year IT students’ programming skills. In T. Cochrane, V. Narayan, C. Brown, K.
MacCallum, E. Bone, C. Deneen, R. Vanderburg, & B. Hurren (Eds.), People, partnerships and pedagogies.
Proceedings ASCILITE 2023. Christchurch (pp. 430 - 434). https://doi.org/10.14742/apubs.2023.541

Note: All published papers are refereed, having undergone a double-blind peer-review process.
The author(s) assign a Creative Commons by attribution license enabling others to distribute, remix, tweak, and
build upon their work, even commercially, as long as credit is given to the author(s) for the original creation.

© Harris, D., Von Itzstein, G. S., Kelly, D. & Smith, E. 2023

https://doi:10.5220/0006794203030308
https://doi.org/10.1109/FIE.2006.322434
https://doi.org/10.1145/3328778.3366857
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1007/s40692-018-0103-3
https://doi.org/10.3233/jid-2013-0004
https://doi.org/10.14742/apubs.2023.541

	IDE vs. pen-and-paper showdown - Performance and perceptions of testing first-year IT students’ programming skills
	David Harris, G. Stewart Von Itzstein, Douglas Kelly and Elizabeth Smith
	Introduction and background
	Methodology
	Results and Discussion
	Student Test Performance and Perceived Performance
	Quantitative Survey Responses
	Qualitative Survey Responses
	Conclusion
	References

