
434 | P a g e

Natural Language Proficiency and Computational
Thinking: Two linked literacies of the 21st Century

Ronald Monson
Centre for Learning & Teaching
Edith Cowan University

Literacy as natural language fluency, is the primary literacy underpinning most learning but there
is a new literacy gathering momentum in this information age - Computational Thinking. This
paper draws connections between the two; highlighting analogs, differences, and bridges that are
transforming both pedagogies while also illustrating a growing educational nexus.

Keywords: Literacies, Computational Thinking, English Language Proficiency, LACR

Introduction

What are the major literacies needed to thrive in the 21st Century? The following four are positioned as
capturing key fluencies: Language Proficiency, Art-Design Dexterity, Computational-Thinking Prowess,
Reasoning Deftness (LACR). This capture also includes a further dynamic; a natural pairing of language and
computational thinking working as support to another pairing, the creative literacies associated with art-design
and reasoning.

7KH�LQWHQW�EHKLQG�/$&5¶V�HQFDSVXODWLRQ�LV�WR�SURPRWH�DQG�SUREH�FRQQHFWions between existing
humanities/science-like divisions in ways that recent developments suggest are becoming essential to thriving in
a computer-driven society. Startling advances in machine-learning capabilities have begun to automate the
acquisition of human-like intuitions. This is perhaps no more compellingly illustrated as in the imaginative play
and learning displayed by AlphaGo LQ�LWV�UHFHQW�GHIHDW�RI�WKH�ZRUOG¶V�EHVW�*R�SOD\HUV�(Silver et al., 2016).
Previously, automation has been about the speeding through of predictable steps but without any obvious need
to invoke human-OLNH�FUHDWLYLW\�LQ�WKH�DOJRULWKPV�WKHPVHOYHV��)RU�H[DPSOH��:LQJ¶V��������GHILQLWLRQ�RI�
computational thinking captures this task-oriented, problem-solving nature that has characterized much of
previous automation.

Computational thinking is the thought processes involved in formulating a problem and
expressing its solution(s) in such a way that a computer²human or machine²can effectively
carry out. (J. Wing, 2014)

An updated version is called for, we suggest, in the wake of these technological bombshells; one that captures
new imaginative, intuitive capabilities. A modern definition of computational thinking therefore, needs
creativity and exploration to share top billing with problem solving and also have linguistic overtones attendant
to both; further, in our view it also needs to explicitly incorporate judgement, interpretation and collaboration.
Judgement is justified, since no computational solution, exploration or simulation succeeds without a prior
rationale (including scenarios where it is not appropriate - ethically or feasibly). Interpretation is pivotal since,
even without individual implementation, modern citizenry is increasingly required to make decisions based on
the outcomes of computational thinking (consider internet search, advertising, recommendation systems and
data-GULYHQ�HGXFDWLRQDO�SDWKZD\V���1H[W��PHOGLQJ�JOREDO�FRQQHFWLYLW\�ZLWK�FRPSXWDWLRQDO�WKLQNLQJ¶V�VLJQDWXUH�
reductionism has unleashed radical collaborations on grand, unprecedented scales. Finally, the recent explosion
LQ�WKH�³,QWHUQHW�RI�7KLQJV´�SURSRXQGV�EURDGHQLQJ�FRPSXWHUV¶�ODSWRS�GHVNWRS�FRQQRWDWLRQV�WR�FRYHU�PRUH�JHQHUDO�
computational devices. Putting all these together, our updated version becomes:

Computational thinking allows computational devices to solve problems, explore spaces and
simulate systems judiciously, creatively and linguistically while also fostering interpretations of
RWKHU¶V�FRPSXWDWLRQDO�WKLQNLQJ�

435 | P a g e

Note that this is an operational definition of what computational thinking can enable; the thought processes it
embodies is addressed later but first, some historical context in the evolution of computational thinking and
natural language literacies.

Background

Almost 60 years ago Snow famously lamented the cultural division between The Arts and The Sciences (1993)
ZKLOH�GXULQJ�WKH�����¶V��OLQNV�EHWZHHQ�FRGLQJ�DQG�ZULWLQJ�ZHUH�WHQWDWLYHO\�H[SORUHG�ZLWKRXW�HYHU�WXUQLQJ�
mainstream (Fernandez, 2007). There is however, in addition to the aforementioned machine-learning
breakthroughs, another technological development forcing an imminent consilience - the emergence of more
literate SURJUDPPLQJ�ODQJXDJHV��:KLOH�WUXH�DUWLILFLDO�LQWHOOLJHQFH�FDQ¶W�\HW�EH�claimed; equally, no longer can
computers be considered as essentially dumb machines forever consigned to blindly following logical
instructions (Nielsen, 2016). Instead, machines are beginning to display human-like capabilities for developing
intuition (Berman, 2016) while new programming languages are enabling humans to naturally interface with
such abilities. This has revolutionary implications no less in education and what may soon count as fundamental
literacies.

If the development and use of acronyms reflect imperatives and priorities of an educational age, then we argue
WKDW�PRGHUQ�GLJLWL]DWLRQ�FDOOV�IRU�D�UHYLVHG�HQFDSVXODWLRQ�RI�WKLV�HUD¶V�QHFHVVDU\�OLWHUDFLHV��3HULRGLF�H[KRUWDWLRQV�
for �5¶V�EDFN-to-basics or appeals to promote generic Literacy-Numeracy seem tired while more relevant
groupings such as ICT (Information Computing Technology) and STEM (Science, Technology, Engineering
and Mathematics) are less literacy-capture and more discipline-encapsulation as a means to promote greater
inter-disciplinary integration. As laudable as this latter goal is, it has arguably come at a cost of neglecting those
literacies themselves indispensable for achieving such cross-fertilization. This has perhaps been due to anointing
mathematics - a vital STEM member in its own right - but in our view not the most apt choice as the unifying
literacy.

As the oft-quoted lingua franca of science, mathematics was originally conceived as the foundational STEM
literacy but not all members extensively employ its symbolism (notation and concepts from computer-science,
for example, often assume more central roles). Conversely, computational thinking underpins almost all STEM
DFWLYLWLHV�DV�LW�PDUULHV�VFLHQFH¶V�UHGXFWLRQLVP��WHFKQRORJ\¶V�LQQRYDWLRQ��HQJLQHHULQJ¶V�GHVLJQ�DQG�PDWKHPDWLFV¶�
algorithms while also encompassing implementations on ubiquitous computing devices.

Another, somewhat controversial, but potentially useful recent movement has sought to expand STEM to
STEAM by way of adding Art/Design as a relevant and related domain (Dayton, 2014). Rather counter-
productively, this enlargement often becomes mired in politics as STEM advocates resist what they see as the
humDQLWLHV¶�SOD\�IRU�IXQGLQJ�DQG�LQIOXHQFH��7KH�LVVXH�KRZHYHU��LV�QRW�VR�PXFK�ZKHWKHU�RU�QRW�FUHDWLYLW\�DQG�
design are indispensable to STEM progress and innovation - that is a given - but to what extent exposure to the
arts is necessary for fostering such sensibilities. Certainly, there exists an ever-present danger of diluting STEM
rigour and knowledge through over-emphasizing design but such a risk is mitigated through focusing on creative
processes and in particular, on one central to both, composition.

Composing Code and Text

Striking parallels have previously been observed between composing algorithms and essays (Cummings, 2006;
Fernandez, 2007) with arguably the most significant pointed out by Flower and Hayes - repeated oscillations
between macro and micro viewpoints (1981). The computing macro-view coUUHVSRQGV�WR�DQ�DOJRULWKPV¶�RYHUDOO�
conceptualization prior to its decomposition into constituents; its micro-view implementing, testing and
GHEXJJLQJ�WKHVH�VHUYLQJ�SDUWV��$�WH[W¶V�PDFUR-view, on the other hand, stems from its overarching narrative, a
connective thread drawing together constituent words, sentences and paragraphs into, hopefully for the author, a
persuasive flow; its micro-view corresponds to the drafting and crafting of these smaller literary units in the
service of this larger narrative.

Modern pedagogy points to the back and forth, the toggling, the toing and froing between these two viewpoints
as most accurately characterizing the composing process for both coders and writers. The dual meaning of
³FRPSRVH´�KLJKOLJKWV�LQWHUSOD\V�EHWZHHQ�Eoth activities in both modes; its creative, artistic sense
quintessentially evokes music or poetry but also the crafting of textual compositions while its (dis)aggregating
sense captures the (de)composition so synonymous with top algorithmic design. Next, both senses are
characterized in both forms.

To write effectively writers need something to say and someone to persuade. To carry out this function however,
they need a form to impose structure, to give the persuasion some ballast. Part of this structure is provided by
conventions specifically tuned to match the message - book genres, scholarly formatting, report layouts - but
ultimately authors contribute a specific structure via headings, paragraphs, hypotheses, supporting evidence and

436 | P a g e

drawn connections. This last aspect is particularly relevant given the need for good writing to consistently guide
D�UHDGHU¶V�IRFXV�WRZDUGV�WKH�SLHFH¶V�QDUUDWLYH�ZKLOH�DFFRPPRGDWLQJ�D�FRPSHWLQJ�WHQVLRQ�WR�PDLQWDLQ�WKH�WH[W¶V
readability.

$Q�DXWKRU¶V�style gives a piece its originality and is itself a complex, artistic endeavour while also being elusive
to precisely categorize. Some identifiable elements of style include: an authorial voice, imagery evocation, apt
noun/verb/aGMHFWLYH�DGYHUE�FRPELQDWLRQV��ZRUG�FKRLFH��VXFFLQFWQHVV�DQG�D�VHQWHQFH¶V�FDGHQFH�DQG�UK\WKP��$�
ZULWHU¶V�GHYHORSPHQW�UHOLHV�RQ�DGGLQJ�DQG�UHILQLQJ�VXFK�GHYLFHV�KRZHYHU�WKHLU�PRVW�HIIHFWLYH�GHSOR\PHQW�FRPHV�
when they dovetail with an overarching narrative.

:LQJ�GHVFULEHV�D�³VHSDUDWLRQ�RI�FRQFHUQV´�(J. M. Wing, 2006, p. 33) as characterizing computational thinking
while alluding to its role in distinguishing between micro and macro viewpoints, an initial practice that the most
DFFRPSOLVKHG�ZULWHUV�DUH�DEOH�WR�SDUOD\�LQWR�DQ�HQVXLQJ�³MRLQLQJ�RI�FRQFHUQV´��'HVLJQLQJ�DQ�RYHUDOO�QDUUDWLYH�
FRPPHQFHV�PRVW�HIIHFWLYHO\�XQHQFXPEHUHG�ZLWK�VW\OLVWLF�FRQFHUQV�ZKLOH�FRQYHUVHO\��EULQJLQJ�IRUWK�D�VHQWHQFH¶V�
natural rhythm can initially do without over-arching narrative impingements. Masterful expressions of both
however, result from a recursive joining of both concerns (Flower & Hayes, 1981). A narrative benefits from
readers responding to an argument pleasingly outlined, empathically-framed and compellingly articulated. On
the other hand, gRRG�VW\OH�EHQHILWV�IURP�DQ�RYHUDUFKLQJ�QDUUDWLYH�SRLQWLQJ�WR�WKH�³ULJKW´�ZRUG�RU�QXDQFHG�
emphasis. The two also dynamically influence; the very act of stylistic improvements gives rise to deliberate
changes in overall meaning and vice-versa in a virtuous cycle converging towards just what the author wants to
say and just how to say it.

7R�FRGH�HIIHFWLYHO\��FRGHUV�QHHG�D�FRPSXWDWLRQ�ZRUWK�LQYRNLQJ��7KH�FRGH¶V�function is the function itself while
D�PDMRU�GLIIHUHQFH�ZLWK�ZULWLQJ�LV�WKDW�FRGLQJ¶V�form comes in two flavours, the human-friendly interface used
to invoke the function and the code itself. As with writing, this latter form needs a structure which is initially
provided by the constructs of the chosen programming language but also by abstract design patterns most
DSSURSULDWH�WR�WKH�IXQFWLRQ¶V�REMHFWLYH��'HVSLWH�WKHVH�VXSSRUWV��FRGHUV�OLNHZLVH�XOWLPDWHO\�LPSOHPHQW�WKHLU�RZQ�
structure in defining the sub-PRGXOHV�WKDW�HPHUJH�LQ�WKH�RYHUDUFKLQJ�IXQFWLRQ¶V�decomposition. It is in the
implementation of these PRGXOHV�WKDW�D�FRGHU¶V�VW\OH�EHJLQV�WR�HPHUJH�

$�FRGHU¶V�VW\OH�LV�ZKDW�JLYHV�D�SLHFH�RI�FRGH�LWV�FRUUHFWQHVV��UREXVWQHVV��DQG�UHDGDELOLW\��,Q�FRQWUDVW�WR�ZULWLQJ�
style, aesthetic qualities give way to precision, consistency and clarity. These qualities rHIOHFW�WKH�FRGHU¶V�
primary concern in delineating underling data structures, their unambiguous transformations all the while trying
WR�HQVXUH�DQ�XQDOOR\HG�FODULW\�LQ�WKH�SURJUDP¶V�control flow. This concern is so important since it allows ready
debugging oQ�WKH�SURJUDP¶V�MRXUQH\�WR�FRUUHFWO\�UXQQLQJ�

,Q�HIIHFW��WKH�FRGHU¶V�ILUVW�UHDGHU�LV�D�compiler who is a cold, austere entity unimpressed with adornments outside
unforgiving logic. Following this initial constraint however, aesthetic demands enter the picture by way of
HQVXULQJ�WKH�FRGH¶V�maintainability and extendibility - in short, it needs to start accommodating human readers.
At this juncture, coding style assumes more literary-like connotations with questions such as - can
redundancies/repetitions be removed? is there consistency and aptness in the word choice associated with
function names? do functions contain humanly-graspable computational chunks? is the scope of local
variables/concepts consistently displayed? are (prefix, infix and postfix) operators naturally ordered? These too
VSHDN�WR�D�FRGHU¶V�GHYHORSLQJ�OLWHracy and just as with writing, these local decisions about style ultimately
connect with the aimed-for global functionality.

7KH�LQLWLDO�YDOXH�RI�:LQJ¶V�³VHSDUDWLRQ�RI�FRQFHUQV´�LV�YLWDO�IRU�FRGLQJ�DV�JOREDO�SODQQLQJ�LV�GLYRUFHG�IURP�ORFDO�
implementations but, just as in writing, elite coders display a highly-honed facility for oscillating between
holistic and immediate viewpoints. So, for example, an overall architecture can be informed by the availability
of congruous sub-modules and while the process of debugging may start with localising faulty sub-functions, it
often finishes with understanding the control flow as determined by the global architecture. Further, the
influence is similarly bi-directional; the implementation of sub-functions frequently motivates adjustments in
global architecture that can, in turn, engender remarkable simplification at the local level.

Both writing and coding exhibit similar improvement processes with refactoring a fundamental part of the latter.
Refactoring is a technique that aims to exploit the curiously common phenomenon whereby two code-blocks
can exhibit vastly different levels of readability despite implementing exactly the same algorithm. While
NHHSLQJ�WKH�FRGH¶V�IXQFWLRQDOLW\�FRQVWDQW��WKH�FRGH¶V�³UHDGDELOLW\´�FDQ�EH�SURJUHVVLYHO\�LPSURYHG�WR�UHDS�
benefits beyond aesthetics. When done well, it can foster collaboration, programmer development, programs
that run more efficiently and reliably while also helping motivate and smooth the addition of new functionality.
It is also an art-form, distinguishing true artisans from hackers.

437 | P a g e

By far and away the most important technique in code refactoring is modularization whereby a chunk of code is
encapsulated and replaced with a single function. Naturally that code must appear somewhere in the program to
maintain functionality but it is wrapped-up, labeled, and strategically positioned elsewhere. The improvement in
readability derives from now being able to conceptualize what the function does without concerns about how it
does it. In so doing, a considerable cognitive overhead is removed allowing a coder to conceptualize an
algorithm at the highest level.

The process of modularization is fundamental not simply as a means for organizing code but also because it
forms a key part of computational thinking - the ability to conceive an algorithm, a system, a mathematical
solution, almost any complex phenomena as a combination of interlocked, constituent parts. The process
proffers multiple advantages which although couched here in a coding context are clearly applicable to any
complex activity, as befitting a core literacy.

One of the most productive, refactoring activities is to imbue code with an almost linguistic-like readability.
³&RGH´�- the name itself indicates a space between its appearance and underlying meaning - has traditionally
needed clarifying accoutrements (pseudo-code, comments, documentation) but modern languages are
increasingly allowing more linguistic-like input forms (macros, operator forms, name-space management). What
this means is that code-bases can be more quickly absorbed and therefore more readily maintained and
extended.

The great advantage of a programming language taking on the complexion of a natural language is the resulting,
enlarged space of individuality-stamped programs. Such individuality, as opposed to monolithic codebases
generated by thousands, promotes coders as artisans whose ongoing improvement is motivated from learning
from legendary practitioners or culturally-determined classics. Further, the additional richness of resulting
programs inevitably recasts the relationship between form and function in engendering new algorithms.

7XUQLQJ�WRZDUGV�ZULWLQJ¶V�LPSURYHPHQW�SURFHVV��ZH�LQLWLDOO\�REVHUYH�WKDW�SROLVKLQJ�RU�UHILQLQJ�D�SLece of
writing can draw upon three significant practices used in code refactoring, the first being a more precise
delineation of what is being preserved between refinements. In coding what is preserved during refactoring is a
SURJUDP¶V�functionality whereaV�LQ�ZULWLQJ�WKH�HTXLYDOHQW�LQYDULDQW�WKURXJKRXW�WKH�UHILQHPHQW�LV�D�SLHFH¶V�
meaning. Already this represents is a slight divergence from coding since almost by definition re-wordings
involve at least subtle shifts in meaning but nonetheless, there usually remains a faithfulness towards an
overarching thread or narrative. Often such a narrative is said to contain a logical structure itself not unlike a
SURJUDP¶V�ORJLF�GHILQLQJ�LWV�IXQFWLRQDOLW\��7KLV�VWUXFWXUH�LQFOXGHV�UHDVRQLQJ�FKDLQV�ZKLFK��LI�PDGH�H[SOLFit (or
evaluated dynamically with real-time sentiment or coherency analysis (McNamara, Graesser, McCarthy, & Cai,
2012)), can act as guiding lodestar in satisfying the refiner that style is being improved without compromising
previously established substance.

Modularization is a core component of computational thinking in both composing types but it is pursued
relentlessly throughout coding in a way in which, if repeated with writing can yield many clarifying benefits. In
this refining stage there are four types of modularization typically used as a means to shift material whose
FXUUHQW�SODFHPHQW�PD\�EH�GHWUDFWLQJ�IURP�D�QDUUDWLYH¶V�FODULW\�����LQ-text parentheses, 2) footnotes 3) appendices
and 4) references. It is through liberal and systematic use of these devices that a piece of writing can be refined,
filtered, reduced to reveal its narrative essence. Further, unifying how these are included and managed, in
following the ways in which coding modules are organized (e.g. code folding), can enhance composing
flexibility.

Another striking difference between the respective processes of improving writing and coding is the frequency
and duration over which they take place. In writing, stand-alone compositions veer towards singly-authored,
frozen-in-time artefacts. Contrast this with large codebases produced by hundreds of contributors that are often
published daily following nightly builds. This gap suggests how writing can be made more adaptable to
FRQWHPSRUDU\�FLUFXPVWDQFHV�ZKLOH�DOVR�SURPRWLQJ�ZULWHUV¶�RZQ�GHYHORSPHQW��HGXFDWLRQ�DQG�SHUKDSV�HYHQ�
untapped virtuosity.

Literacy possesses a virtuosic hue in the sense of taking years to develop and yet being expressible within a
VLQJXODU�³SHUIRUPDQFH´��D�IHDWXUH�WKDW�KDV�UDUHO\�H[SORUHG�SHGDJRJLFDO�LPSOLFDWLRQV��&RQVLGHU�WKH�LQHIILFLHQW�
way students acquire essay-writing expertise: along with a final grade, a submission may receive feedback
advising an improvement in word choice, the omission of redundant or repetitive terms together with
establishing a more coherent and definitive narrative. Rarely however, does this end up occurring in the
critiqued piece itself; instead students are left to implement (often a subset of) these recommendations in
subsequent essays, where they may manifest differently in different contexts that themselves carry new literacy
imperatives. An ongoing process however, whereby students have the opportunity to craft a piece over an
extended period, would facilitate better use of feedback, incorporate new knowledge while also conveying
explicit connections between literacy and localized manifestations of virtuosity.

438 | P a g e

The first rationale behind drawing connections between natural language and coding is the belief that learners
with an awareness of both can ultimately become better writers and coders. Literacies are by definition lifelong
processes, (in contrast to say course leaning outcomes), so ongoing opportunities present for long-term
scaffolding. Further, the ongoing and rapid digitization of learning data in combination with the emerging field
of learning analytics affords opportunities for verifying and shaping such longitudinal interactions.

The final rationale stems from a deeper natural language and coding nexus that is harnessing Natural Language
Processing (NLP) to both define and understand algorithms in ways set to transform learning spaces. While text
(completions) have revolutionized search and more recently AI-OLNH�WRROV�VXFK�DV�$SSOH¶s Siri��*RRJOH¶V�
Assistant DQG�0LFURVRIW¶V�Cortana are applying language for every-day assistance, the corresponding
algorithms, while impressively summoned, all remain relatively constrained and task-oriented. Learning
analytical feedback, on the other hand, is potentially on another level of complexity and importance as its
algorithms define educational, life-long pathways. Consequently, the ability to understand and direct such
feedback, or equivalently, understand and create algorithms in natural ways through visualization (Beheshitha,
+DWDOD��*DãHYLü��	�-RNVLPRYLü������� and language (Muslim, Chatti, Mahapatra, & Schroeder, 2016) represents
a new educational frontier.

Conclusion

This paper has introduced LACR, a grouping of four literacies aimed at reflecting a modern consilience while
focussing on two, language proficiency and computational-thinking prowess. It broadened the notion of
computational thinking to include recent developments in machine learning and programming languages while
demonstrating how connections between the two can be used to improve both literacies. Curricula-wise, while
there remains much to be done, the intent was to set the scene for perhaps an even bigger challenge, the use of
these language-EDVHG�PHDQV�WR�LQVWLO�/$&5¶V�RWKHU��³KLJKHU-RUGHU´�OLWHUDFLHV��art-design dexterity and reasoning
deftness.

439 | P a g e

References

%HKHVKLWKD��6��6���+DWDOD��0���*DãHYLü��'���	�-RNVLPRYLü��6����������7KH�5ROH�RI�$FKLHYHPHQW�*RDO�
Orientations When Studying Effect of Learning Analytics Visualizations. Learning Analytics and
.QRZOHGJH��/$.¶���, 54±63. http://doi.org/10.1145/2883851.2883904

Berman, A. (2016). The Last Frontiers of AI: Can Scientists Design Creativity and Self-Awareness? Retrieved
from http://singularityhub.com/2016/04/20/the-last-frontiers-of-ai-can-scientists-design-creativity-and-
self-awareness/

Cummings, R. E. (2006). Coding with power: Toward a rhetoric of computer coding and composition.
Computers and Composition, 23(4), 430±443. http://doi.org/10.1016/j.compcom.2006.08.002

Dayton, E. (2014). Exploring STEAM: Science, Technology, Engineering, Arts, and Mathematics.
Fernandez, L. (2007). Code and Composition. Ubiquity, 8(Issue 19), 16.

http://doi.org/10.1145/1276156.1276157
Flower, L., & Hayes, J. R. J. R. (1981). A cognitive process theory of writing. College Composition and

Communication, 32(4), 365±387. http://doi.org/10.2307/356600
McNamara, D. S. ., Graesser, A. C. . c, McCarthy, P. M. ., & Cai, Z. . (2012). Automated evaluation of text and

discourse with Coh-Metrix. Automated Evaluation of Text and Discourse with Coh-Metrix.
http://doi.org/10.1017/CBO9780511894664

Muslim, A., Chatti, M. A., Mahapatra, T., & Schroeder, U. (2016). A rule-based indicator definition tool for
personalized learning analytics. In Proceedings of the Sixth International Conference on Learning
Analytics & Knowledge - /$.�¶�� (pp. 264±273). New York, New York, USA: ACM Press.
http://doi.org/10.1145/2883851.2883921

Nielsen, M. (2016). Is AlphaGo Really Such a Big Deal? | Quanta Magazine. Retrieved from
https://www.quantamagazine.org/20160329-why-alphago-is-really-such-a-big-deal/

6LOYHU��'���+XDQJ��$���0DGGLVRQ��&��-���*XH]��$���6LIUH��/���YDQ�GHQ�'ULHVVFKH��*���«�+DVVDELV��'����������
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484±489.
http://doi.org/10.1038/nature16961

Snow, C. P. (Charles P. (1993). The two cultures. Nature (Vol. 400). Cambridge University Press.
Wing, J. (2014). Computational Thinking Benefits Society. Retrieved from

http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33.

http://doi.org/10.1145/1118178.1118215

Note: All published papers are refereed, having undergone a double-blind peer-review process.

The author(s) assign a Creative Commons by attribution licence enabling others
to distribute, remix, tweak, and build upon their work, even commercially, as
long as credit is given to the author(s) for the original creation.

Please cite as: Monson, R. (2016). Natural Language Proficiency and Computational Thinking:
Two linked literacies of the 21st Century. In S. Barker, S. Dawson, A. Pardo, & C. Colvin
(Eds.), Show Me The Learning. Proceedings ASCILITE 2016 Adelaide (pp. 434-439).
https://doi.org/10.14742/apubs.2016.846

http://doi.org/10.1145/2883851.2883904
http://singularityhub.com/2016/04/20/the-last-frontiers-of-ai-can-scientists-design-creativity-and-self-Please
http://singularityhub.com/2016/04/20/the-last-frontiers-of-ai-can-scientists-design-creativity-and-self-Please
http://singularityhub.com/2016/04/20/the-last-frontiers-of-ai-can-scientists-design-creativity-and-self-Please
https://doi.org%ED%AF%80%ED%B0%90%ED%AF%80%ED%B0%92%ED%AF%80%ED%B0%91%ED%AF%80%ED%B0%8F%ED%AF%80%ED%B0%92%ED%AF%80%ED%B0%95%ED%AF%80%ED%B0%98%ED%AF%80%ED%B0%95%ED%AF%80%ED%B0%93%ED%AF%80%ED%B0%90%ED%AF%80%ED%B1%82%ED%AF%80%ED%B1%91%ED%AF%80%ED%B1%96%ED%AF%80%ED%B1%83%ED%AF%80%ED%B1%94%ED%AF%80%ED%B0%8F%ED%AF%80%ED%B0%93%ED%AF%80%ED%B0%91%ED%AF%80%ED%B0%92%ED%AF%80%ED%B0%97%ED%AF%80%ED%B0%8F%ED%AF%80%ED%B0%99%ED%AF%80%ED%B0%95%ED%AF%80%ED%B0%97
http://doi.org/10.1016/j.compcom.2006.08.002
http://doi.org/10.1145/1276156.1276157
http://doi.org/10.2307/356600
http://doi.org/10.1017/CBO9780511894664
http://doi.org/10.1145/2883851.2883921
https://www.quantamagazine.org/20160329-why-alphago-is-really-such-a-big-deal/
http://doi.org/10.1038/nature16961
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
http://doi.org/10.1145/1118178.1118215

